Servomechanism (SERVO)

A servomechanism, sometimes shortened to servo, is an automatic device that uses error-sensing negative feedback to correct the performance of a mechanism and is defined by its function. It usually includes a built-in encoder. A servomechanism is sometimes called a heterostat since it controls a system’s behavior by means of heterostasis.

                             The term correctly applies only to systems where the feedback or error-correction signals help control mechanical position, speed or other parameters. For example, an automotive power window control is not a servomechanism, as there is no automatic feedback that controls position—the operator does this by observation. By contrast a car’s cruise control uses closed loop feedback, which classifies it as a servomechanism.

                           A Servo is a small device that has an output shaft. This shaft can be positioned to specific angular positions by sending the servo a coded signal. As long as the coded signal exists on the input line, the servo will maintain the angular position of the shaft. As the coded signal changes, the angular position of the shaft changes. In practice, servos are used in radio controlled airplanes to position control surfaces like the elevators and rudders. They are also used in radio controlled cars, puppets, and of course, robots.

VFD Advantages -

  • High output power relative to motor size and power
  • Encoder determines accuracy and resolution.
  • Resonance and vibration free operation
  • High efficiency
  • There is no out-of-step condition, as heavy load placed on the motor the driver will increase the current to the motor
  • High speed operation is possible